The Enterococcus faecalis EbpA Pilus Protein: Attenuation of Expression, Biofilm Formation, and Adherence to Fibrinogen Start with the Rare Initiation Codon ATT

نویسندگان

  • Maria Camila Montealegre
  • Sabina Leanti La Rosa
  • Jung Hyeob Roh
  • Barrett R. Harvey
  • Barbara E. Murray
چکیده

UNLABELLED The endocarditis and biofilm-associated pili (Ebp) are important in Enterococcus faecalis pathogenesis, and the pilus tip, EbpA, has been shown to play a major role in pilus biogenesis, biofilm formation, and experimental infections. Based on in silico analyses, we previously predicted that ATT is the EbpA translational start codon, not the ATG codon, 120 bp downstream of ATT, which is annotated as the translational start. ATT is rarely used to initiate protein synthesis, leading to our hypothesis that this codon participates in translational regulation of Ebp production. To investigate this possibility, site-directed mutagenesis was used to introduce consecutive stop codons in place of two lysines at positions 5 and 6 from the ATT, to replace the ATT codon in situ with ATG, and then to revert this ATG to ATT; translational fusions of ebpA to lacZ were also constructed to investigate the effect of these start codons on translation. Our results showed that the annotated ATG does not start translation of EbpA, implicating ATT as the start codon; moreover, the presence of ATT, compared to the engineered ATG, resulted in significantly decreased EbpA surface display, attenuated biofilm, and reduced adherence to fibrinogen. Corroborating these findings, the translational fusion with the native ATT as the initiation codon showed significantly decreased expression of β-galactosidase compared to the construct with ATG in place of ATT. Thus, these results demonstrate that the rare initiation codon of EbpA negatively regulates EbpA surface display and negatively affects Ebp-associated functions, including biofilm and adherence to fibrinogen. IMPORTANCE Enterococcus faecalis is among the leading causes of serious infections in the hospital setting, and the endocarditis and biofilm-associated pili (Ebp) have been shown to play significant roles in E. faecalis pathogenesis. Understanding the regulation of virulence is important for the development of new approaches to counteract multidrug-resistant pathogens. We previously predicted that ATT, which has been reported to start protein synthesis only in rare instances, is the most likely translational start codon of EbpA in E. faecalis. Here, we demonstrate that ATT is the initiation codon of EbpA and, relative to a constructed ATG start codon, results in smaller amounts of EbpA on the surface of the cells, attenuating biofilm formation and fibrinogen adherence, phenotypes associated with the ability of E. faecalis to cause infections. This provides the first example of pilus regulation through the use of an ATT initiation codon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contribution of Individual Ebp Pilus Subunits of Enterococcus faecalis OG1RF to Pilus Biogenesis, Biofilm Formation and Urinary Tract Infection

The endocarditis and biofilm-associated pilus (Ebp) operon is a component of the core genome of Enterococcus faecalis that has been shown to be important for biofilm formation, adherence to host fibrinogen, collagen and platelets, and in experimental endocarditis and urinary tract infection models. Here, we created single and double deletion mutants of the pilus subunits and sortases; next, by ...

متن کامل

Pilin and sortase residues critical for endocarditis- and biofilm-associated pilus biogenesis in Enterococcus faecalis.

Enterococci commonly cause hospital-acquired infections, such as infective endocarditis and catheter-associated urinary tract infections. In animal models of these infections, a long hairlike extracellular protein fiber known as the endocarditis- and biofilm-associated (Ebp) pilus is an important virulence factor for Enterococcus faecalis. For Ebp and other sortase-assembled pili, the pilus-ass...

متن کامل

Acceleration of Enterococcus faecalis Biofilm Formation by Aggregation Substance Expression in an Ex Vivo Model of Cardiac Valve Colonization

Infectious endocarditis involves formation of a microbial biofilm in vivo. Enterococcus faecalis Aggregation Substance (Asc10) protein enhances the severity of experimental endocarditis, where it has been implicated in formation of large vegetations and in microbial persistence during infection. In the current study, we developed an ex vivo porcine heart valve adherence model to study the initi...

متن کامل

The Metal Ion-Dependent Adhesion Site Motif of the Enterococcus faecalis EbpA Pilin Mediates Pilus Function in Catheter-Associated Urinary Tract Infection

UNLABELLED Though the bacterial opportunist Enterococcus faecalis causes a myriad of hospital-acquired infections (HAIs), including catheter-associated urinary tract infections (CAUTIs), little is known about the virulence mechanisms that it employs. However, the endocarditis- and biofilm-associated pilus (Ebp), a member of the sortase-assembled pilus family, was shown to play a role in a mouse...

متن کامل

Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections

Gram-positive bacteria in the genus Enterococcus are a frequent cause of catheter-associated urinary tract infection (CAUTI), a disease whose treatment is increasingly challenged by multiantibiotic-resistant strains. We have recently shown that E. faecalis uses the Ebp pilus, a heteropolymeric surface fiber, to bind the host protein fibrinogen as a critical step in CAUTI pathogenesis. Fibrinoge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015